Journal of Food Security. 2022, 10(3), 89-96
DOI: 10.12691/JFS-10-3-1
Original Research

Characterization of Psychrophilic Pathogens in Ready-to-eat Salads Sold in Supermarkets in the City of Abidjan (Côte d’Ivoire)

N’Goran Parfait N’Zi1, 2, Hadja Djénéba Ouattara3, Yao Paul Attien1, Valérie Carole Gbonon2, Nathalie Kouadio Guessennd2 and Djédoux Maxime Angaman1,

1Department of Biochemistry-Microbiology, Agrovalorization Laboratory, Jean Lorougnon Guédé University, Daloa, Côte d'Ivoire

2Department of Bacteriology-Virology, National Reference Center for Antibiotics, Pasteur Institute, Abidjan, Côte d'Ivoire

3Laboratory of Biotechnology, Agriculture and Valorization of Biological Resources, Biotechnology Unit, Felix HOUPHOUET-BOIGNY University, Abidjan, Côte d’Ivoire

Pub. Date: October 13, 2022

Cite this paper

N’Goran Parfait N’Zi, Hadja Djénéba Ouattara, Yao Paul Attien, Valérie Carole Gbonon, Nathalie Kouadio Guessennd and Djédoux Maxime Angaman. Characterization of Psychrophilic Pathogens in Ready-to-eat Salads Sold in Supermarkets in the City of Abidjan (Côte d’Ivoire). Journal of Food Security. 2022; 10(3):89-96. doi: 10.12691/JFS-10-3-1

Abstract

Ready-to-eat salads have become highly demanded foods in the city of Abidjan (Côte d’ivoire) because of their considerable benefits both nutritionally and therapeutically. However, these foods are considered products that are very vulnerable to microbial contamination. In order to contribute to food safety in Côte d'Ivoire, in particular among the Abidjan population, we have set the objective of inventorying psychrophilic pathogenic species in ready-to-eat salads sold in supermarkets. Thus, a total of 60 samples were analyzed using the techniques of classical microbiology, molecular biology, bioinformatics and statistics. For the search for psychrophilic pathogens, the selective culture medium (Oxford agar) of the pathogens frequently isolated (L. monocytogenes) was used. Microbiological analyzes revealed the presence of similar germs in 6 samples based on growth characters with Oxford’s selective medium. However, molecular sequencing allowed to identify six (6) different pathogens, Lysinibacillus fusiformis in spinach salads (EP), Listeria monocytogenes in mixed salads (SCOM), Staphylococcus saprophyticus in lamb's lettuce and arugula, Staphylococcus fleurettii in carrots (SCA), Staphylococcus nepalensis in young shoots (JP) and Bacillus cereus in cabbage (SCH). The growth kinetics showed the characterized species grow significantly in the different lettuces under domestic storage conditions after opening the packaging except for S. fleurettii. However, the growth of L. fusiformis and B. cereus was found to be more significant. In conclusion, S. saprophyticus, S. nepalensis, B. cereus, L. fusiformis and B. cereus grow easily on oxford agar presenting similar culture characters like L. monocytogenes. In addition, the presence of unknown pathogenic species in ready-to-eat salads and their significant growth during the domestic storage period is a real public health problem. It would therefore be wise for the health authorities to set up a monitoring program for these species in the ready-to-eat sold in supermarkets in Côte d'Ivoire.

Keywords

ready-to-eat salads, psychrophilic pathogens, Abidjan (Côte d’Ivoire)

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  Rico, D., Martin-Diana, A. B., Barat, M. and Barry-Ryan, C. Extending and measuring the quality of fresh-cut fruit and vegetables A Review Trends in Food Science and Technology, 18, 373-386, 2007.
 
[2]  De Corato, U. Improving the shelf-life and quality of fresh and minimally-processed fruits and vegetables for a modern food industry: A comprehensive critical review from the traditional technologies into the most promising advancements. Critical Reviews in Food Science and Nutrition, 60, 940-975, 2020.
 
[3]  Lorente-Mento, J. M., Valverde, J., Serrano, M. and Pretel, M. T. 2022. Fresh-Cut Salads: Consumer Acceptance and Quality Parameter Evolution during Storage in Domestic Refrigerators. Sustainability, 14, 3473, 2022.
 
[4]  Paudyal, N., Anihouvi, V., Hounhouigan, J., Matsheka, M. I., Sekwati-Monang, B., Amoa-Awua, W., Atter, A., Ackah, N. B., Mbugua, S., Asagbra, A., Abdelgadir, W., Nakavuma, J., Jakobsen, M. and Fang, W. Prevalence of Foodborne Pathogens in Food from Selected African Countries - A Meta-Analysis. International Journal of Food Microbiology. 249, 35 43. 2017.
 
[5]  N'Zi, N. P., Angaman, D. M., Gbonon, V. C. and Tiekoura, K. B.  Etude de la qualité microbiologique des salades de 4ème gamme vendues dans des supermarchés de la ville d’Abidjan (Côte d’Ivoire) durant la période de conservation domestique après ouverture des emballages, International Journal of Innovation and Applied Studies, 36 (2), 577-587, 2022.
 
[6]  Mir, S. A., Shah, M. A., Mir, M. M., Dar, B. N., Greiner, R. and Roohinejad. S. Microbiological Contamination of Ready-to-Eat Vegetable Salads in Developing Countries and Potential Solutions in the Supply Chain to Control Microbial Pathogens. Food Control, 85, 235-44, 2018.
 
[7]  Allende, A., Aguayo, E. and Artés, F. Microbial and Sensory Quality of Commercial Fresh Processed Red Lettuce throughout the Production Chain and Shelf Life. International Journal of Food Microbiology. 91 (2), 109-17, 2004.
 
[8]  Tian, J. Q., Bae, Y. M., Choi, N.Y., Kang, D. H., Heu, S. and Lee, S. Y. Survival and Growth of Foodborne Pathogens in Minimally Processed Vegetables at 4 and 15 °C. Journal of Food Science. 77 (1), 48-50, 2012.
 
[9]  Becker, B., Stoll, D., Schulz, P., Kulling, S. and Huch, M. Microbial Contamination of Organically and Conventionally Produced Fresh Vegetable Salads and Herbs from Retail Markets in Southwest Germany. Foodborne Pathogens and Disease, 16 (4), 269-75. 2019.
 
[10]  Churchill, K. J., Sargeant, J. M., Farber, J. M. and O’connor, A. M. Prevalence of Listeria monocytogenes in Select Ready-to-Eat Foods Deli Meat, Soft Cheese, and Packaged Salad: A Systematic Review and Meta-Analysis. Journal of Food Protection, 82 (2), 344-57, 2019.
 
[11]  Chen, M., Chen, Y., Wu, Q., Zhang, J., Cheng, J., Li, F., Zeng, H., Lei, T., Pang, R., Ye, Q., Bai, J., Xianhu, J. W., Wei., Zhang, Y. and Ding, Y. Genetic characteristics and virulence of Listeria monocytogenes isolated from fresh vegetables in China. BMC Microbiology 19 (1), 119, 2019.
 
[12]  Angaman, D. M., N’zi, N. P. and Gbonon, V. C. Kinetics of Microorganisms in Ready-To-Eat Salads Stored at 4°C Sold in Supermarkets in the City of Abidjan, Côte d’Ivoire. International Journal of Current Microbiology and Applied Sciences. 10 (03), 1984-1992. 2021.
 
[13]  ISO 11290-2:2017 Microbiology of the food chain — Horizontal method for the detection and enumeration of Listeria monocytogenes and of Listeria spp. — Part 2: Enumeration method.
 
[14]  ISO 7218: 2007 Microbiology of food and animal feeding stuffs — General requirements and guidance for microbiological examinations.
 
[15]  Ouattara, H. G., Revercho, n S. and Niamke, S. L., Nasser W. Molecular identification and pectate lyase production byBacillus strains involved in cocoa fermentation. Food Microbiology, 28, 1-8, 2011.
 
[16]  Boko A.C.E. and Angaman D. M. Evaluation de L’entomophagie dans Quatre Grandes Villes de Côte d’Ivoire. European Scientific Journal, 17(37), 1. 2021.
 
[17]  Boumba, A. E. L., Lebonguy, A. A., Chancelvy, P. L. P., Moukala, M. B. and Goma-Tchimbakala, J. Hygienic Quality of Fermented Pepper Sold in the Markets of Brazzaville. Journal of Food Security.10 (1), 17-24, 2022.
 
[18]  Sapkota A. Esculin Hydrolysis Test- Principle, Procedure, Results, Uses. Microbe Notes, 2022.
 
[19]  Baatouche Amina M. Synthese bibliographique sur caracteres et methodes bacteriologiques horizontales pour denombrement des especes Listeria monocytogenes dans les denrees alimentaires. 2021.
 
[20]  Gartley, S., Brienna, A. C, Manan S. and Kalmia, E. K. Listeria Monocytogenes in Irrigation Water: An Assessment of Outbreaks, Sources, Prevalence, and Persistence. Microorganisms, 10 (7), 13-19, 2022.
 
[21]  Ijabadeniyi, Oluwatosin A., Buys, E.M., Debusho, L. K., Van der Linde, and Michael J. Irrigation Water as a Potential Preharvest Source of Bacterial Contamination of Vegetables. Journal of Food Safety 31 (4), 452-61, 2011.
 
[22]  Thévenot, D., Dernburg, A. and Vernozy-Rozand, C. An Updated Review of Listeria Monocytogenes in the Pork Meat Industry and Its Products. Journal of Applied Microbiology 101 (1), 7-17. 2006.
 
[23]  Zhang, H., Wang, J., Chang, Z., Liu, X., Chen, W., Yu, Y. Wang, X., Dong, Q., Ye, Yulong, and Zhang, X. Listeria monocytogenes Contamination Characteristics in Two Ready-to-Eat Meat Plants From 2019 to 2020 in Shanghai. Frontiers in Microbiology, 12, 729-114. 2021.
 
[24]  Tanui, C. K., Benefo, E. O., Karanth, S. and Pradhan, A. K. Machine Learning Model for Food Source Attribution of Listeria monocytogenes. Pathogens 11 (6), 691, 2022.
 
[25]  Kim, H. J., Koo, M., Hwang, D., Choi, J. H., Kim, S M. and Se-Wook Oh. Contamination Patterns and Molecular Typing of Bacillus Cereus in Fresh-Cut Vegetable Salad Processing. Applied Biological Chemistry 59 (4), 573-77, 2016.
 
[26]  Mgbakogu, R. A. and Eledo, B. O. Studies on Urinary Tract Infection among Diabetics in Some Eastern States of Nigeria. Advances in Life Science and Technology, 34, 4246. 2015.
 
[27]  Haque, M. D., Quan, H., Zuo, Z., Khan, A., Siddique, N. and Cheng H. Pathogenicity of Feed-Borne Bacillus Cereus and Its Implication on Food Safety. Agrobiological Records, 3, 1-16, 2020.
 
[28]  De Visscher A., Supré K., Haesebrouck F., Zadoks R.N., Piessens V., Van Coillie E., Piepers S. & De Vliegher S. Further evidence for the existence of environmental and host-associated species of coagulase-negative staphylococci in dairy cattle. Veterinary Microbiology, 172(3-4), 466-474, 2014.
 
[29]  Piccart K., Verbeke J., De Visscher A., Piepers S., Haesebrouck F. & De Vliegher S. Local host response following an intramammary challenge with Staphylococcus fleurettii and different strains of Staphylococcus chromogenes in dairy heifers. Veterinary Research, 47(1), 56, 2016.
 
[30]  De Paiva-Santos, W., De Sousa, V. S. and De Marval, M. G. Occurrence of Virulence-Associated Genes among Staphylococcus Saprophyticus Isolated from Different Sources. Microbial Pathogenesis, 119, 9-11, 2018.
 
[31]  Wang, Y. T., Lin, Y. T., Wan, T. W. Wang, D. Y., Lin, H. Y. Lin, C. Y., Chen, Y. C. and Teng, L. J. Distribution of Antibiotic Resistance Genes among Staphylococcus Species Isolated from Ready-to-Eat Foods. Journal of Food and Drug Analysis, 27 (4), 841-48, 2019.
 
[32]  Fröhling, A., Rademacher, A., Rumpold, B., Klocke, M. and Schlüter, O. Screening of Microbial Communities Associated with Endive Lettuce during Postharvest Processing on Industrial Scale. Heliyon, 4 (7), 00671, 2018.
 
[33]  Vernozy-Rozand C., Mazuy C., Meugnier H., Bes M., Lasne Y., Fiedler F., Etienne J. and Freney J. Staphylococcus fleurettii sp. nov., isolated from goat’s milk cheeses. International Journal of Systematic and Evolutionary Microbiology, 50(4), 1521-1527, 2000.
 
[34]  Nováková D., Pantůcek R., Petrás P., Koukalová D. & Sedlácek I. Occurance of Staphylococcus nepalensis strains in different sources including human clinical material. FEMS microbiology letters, 263(2), 163-168, 2006.
 
[35]  Hosoya S., Kutsuna S., Shiojiri D., Tamura S., Isaka E., Wakimoto Y., Nomoto H. & Ohmagari N. Leuconostoc lactis and Staphylococcus nepalensis Bacteremia, Japan. Emerging Infectious Diseases, 26(9), 2283-2285, 2020.
 
[36]  Sulaiman, I. M., Hsieh, Y. H., Jacobs, E., Miranda, N., Simpson, S. and Kerdahi, K. Identification of Lysinibacillus Fusiformis Isolated from Cosmetic Samples Using MALDI-TOF MS and 16S RRNA Sequencing Methods. Journal of AOAC International, 101 (6), 1757-62, 2018.
 
[37]  Morioka H., Oka K., Yamada Y., Nakane Y., Komiya H., Murase C., Iguchi M. & Yagi T. Lysinibacillus fusiformis bacteremia: Case report and literature review. Journal of Infection and Chemotherapy: Official Journal of the Japan Society of Chemotherapy, 28(2): 315-318, 2022.
 
[38]  Rodrigo, Dolores, Cristina M. Rosell, et Antonio Martinez. Risk of Bacillus cereus in Relation to Rice and Derivatives. Foods 10 (2), 302, 2021.
 
[39]  Alegbeleye, O. and Sant’Ana, A. S. Survival and Growth Behaviour of Listeria Monocytogenes in Ready-to-Eat Vegetable Salads. Food Control, 138, 109023. 2022.
 
[40]  Tucci, P., Centorotola, G., Salini, R., Iannetti, L., Sperandii, A. F., D’Alterio, N., Migliorati, G. and Pomilio. F. Challenge test studies on Listeria monocytogenes in ready-to-eat iceberg lettuce. Food Science & Nutrition, 7 (12): 3845-52, 2019.