Journal of Food Security. 2023, 11(3), 85-91
DOI: 10.12691/JFS-11-3-1
Original Research

Modelling of Reaction Kinetics of Hibiscus Sabdariffa L. Juice Anthocyanins Degradation by Electrochemical Means

Ndiaye Khady1, 2, Kane Cheikhou1, , Ndoye Mouhamed1, Ayessou Nicolas2, Cisse Mady2 and Diop Codou Mar1

1Laboratory of Electrochemistry and Membrane Processes ESP/UCAD, Dakar Senegal

2Laboratory of Continuing Education in Food Industry ESP/UCAD, Dakar Senegal

Pub. Date: November 14, 2023

Cite this paper

Ndiaye Khady, Kane Cheikhou, Ndoye Mouhamed, Ayessou Nicolas, Cisse Mady and Diop Codou Mar. Modelling of Reaction Kinetics of Hibiscus Sabdariffa L. Juice Anthocyanins Degradation by Electrochemical Means. Journal of Food Security. 2023; 11(3):85-91. doi: 10.12691/JFS-11-3-1

Abstract

The numerous benefits of anthocyanins from Hibiscus sabdariffa L on human health explain all the thermal and athermal preservation techniques undertaken so far. However, these methods result in considerable losses of anthocyanins, leading to a deterioration of the nutritional and organoleptic qualities of the product during storage.Platinum electrode oxygen reduction is a new athermal technique using a two-compartment electrolysis cell separated by a cationic membrane. The fruit juice is stabilized by passing the reduction current for a set time. The electrochemical approach is a new technique for cold juice without additing chemical molecules. Reaction kinetics in Hibiscus sabdariffa juice follows 1st order kinetics. The classical Arrhenius, Ball and Eyring models used showed the degradative effect of dissolved oxygen in the juice with a significant difference (Ea = 4000 J/mol) between the activation energy of the electroreduced extract and the control (untreated). This is corroborated by the values of the half-reaction time which are 24 S-1 for the electrochemically treated extract and 20 S-1 for the untreated control after 5 months of storage at 4°C.The value of the enthalpy of activation of the electroreduced juice about 6 J/mol/K and that of the control 5,72 J/mol/K shows that the electrochemical process takes place at low energy, i.e. 0,28 J/mol/K for a volume of about 250 ml.The various kinetic models have also confirmed by the electrochemical approach that the temperature factor predominates over the dissolved oxygen factor. At 37°C, the half-reaction time is 1,3 s-1 for the electroreduced Hibiscus juice as for the untreated extract after 5 months of conservation.

Keywords

Modelling, Hibiscus sabdariffa, anthocyanins, oxygen, conservation, Electroreduction, kinetic

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  N. J. ELIZONDO, “Impact des opérations thermiques agroalimentaires à hautes températures sur la dégradation des anthocyanes : Caractérisation et modélisation des cinétiques réactionnelles Impact des opérations thermiques agroalimentaires,” MONTPELLIER SUPAGRO Institut des régions chaudes, 2011.
 
[2]  M. C. Isse, M. D. Ornier, M. S. Akho, C. M. A. R. D. Iop, M. R. Eynes, and O. S. Ock, “Article de synthèse La production du bissap ( Hibiscus sabdariffa L .) au Sénégal,” vol. 64, no. 2, pp. 111–124, 2009.
 
[3]  K. Puro, R. Sunjukta, S. Samir, S. Ghatak, I. Shakuntala, and A. Sen, “Medicinal Uses of Roselle Plant ( Hibiscus sabdariffa L .): A Mini Review,” vol. 27, no. 1, pp. 47–51, 2014.
 
[4]  L. Galvão et al., “Hibiscus sabdari ff a anthocyanins-rich extract : Chemical stability, in vitro antioxidant and antiproliferative activities,” vol. 113, no. November 2017, pp. 187–197, 2018.
 
[5]  L. Articles, “Effects of anthocyanins on the prevention and treatment of cancer Tables of Links,” 2017.
 
[6]  M. Pontié, S. Ben Rejeb, and J. Legrand, “Author ’ s personal copy Anti-microbial approach onto cationic-exchange membranes.”
 
[7]  I. Da-costa-rocha, B. Bonnlaender, H. Sievers, I. Pischel, and M. Heinrich, “Hibiscus sabdariffa L. – A phytochemical and pharmacological review,” vol. 165, pp. 424–443, 2014.
 
[8]  D. Li, P. Wang, Y. Luo, M. Zhao, F. Chen, and F. Group, “Health benefits of anthocyanins and molecular mechanisms : Update from recent decade,” Crit. Rev. Food Sci. Nutr., vol. 57, no. 8, pp. 1729–1741, 2017.
 
[9]  C. Alonso-villaverde, G. Aragon, R. Beltr, and A. Fern, “Phytomedicine The aqueous extract of Hibiscus sabdariffa calices modulates the production of monocyte chemoattractant protein-1 in humans,” vol. 17, pp. 186–191, 2010.
 
[10]  A. M. Sinela, A. Mundombe, and S. Etude, “Etude des mécanismes réactionnels et des cinétiques de dégradation des anthocyanes dans un extrait d ’ Hibiscus sabdariffa L . To cite this version : HAL Id : tel-01580166 CENTRE INTERNATIONAL D ’ ÉTUDES,” 2017.
 
[11]  M. Dornier, “Impact of the extraction procedure on the kinetics of anthocyanin and colour degradation of roselle extracts during storage Mady Cisse, a Fabrice Vaillant, b, c Ale Kane, a Oumoule Ndiaye a,” no. February 2011, pp. 1214–1221, 2012.
 
[12]  D. M. Rasheed, A. Porzel, A. Frolov, and H. R. El, “Comparative analysis of Hibiscus sabdari ff a ( roselle ) hot and cold extracts in respect to their potential for α -glucosidase inhibition,” vol. 250, no. December 2017, pp. 236–244, 2018.
 
[13]  M. X. Meyer and M. O. Dangles, “Institut des régions chaudes Titre Impact des opérations thermiques agroalimentaires à hautes températures sur la dégradation des anthocyanes : Caractérisation et modélisation des cinétiques réactionnelles Impact des opérations thermiques agroalimentaires,” 2011.
 
[14]  D. Diattara, “Stabilité des anthocyanes d ’ extraits et de poudre séchée de calices d ’ Hibiscus sabdariffa en fonction de la température de stockage,” 2012.
 
[15]  M. Cisse, M. M. Belleville, and M. Dornier, “COUPLAGE DE PROCÉDÉS MEMBRANAIRES POUR LA PRODUCTION D ’ EXTRAITS ANTHOCYANIQUES : APPLICATION À HIBISCUS SABDARIFFA,” 2010.
 
[16]  D. D. E. L. U. D. E. Bordeaux et al., “Impacts de l ’ oxygène sur les évolutions chimiques et sensorielles du vin rouge,” 2014.
 
[17]  M. Moutounet, “OBSERVATIONS SUR LA CONSOMMATION DE L ’ OXYGÈNE PENDANT L ’ ÉLEVAGE DES VINS SUR LIES OBSERVATIONS ON THE OXYGEN CONSUMPTION,” pp. 79–86, 1999.
 
[18]  “Gestion de l’oxygène en cours de vinification et conservation des vins de syrah 70,” pp. 70–79.
 
[19]  L. Pechamat et al., “Impact of acidity and oxygen concentrations on chemical evolution and pigment formation in merlot red wine To cite this version : HAL Id : hal-02795334,” 2020.
 
[20]  “des phénomènes oxydatifs pendant le vieillissement des vins en bouteille. Rôle de l’obturateur.”
 
[21]  J.-P. and al Prieels, “Procédé pour éliminer l’oxygène dans les aliments et les boissons, et composition enzymatique utilisée à cet effet,” 1986.
 
[22]  T. Sugawara, M. Shiokawa, A. Nakaoka, F. Application, and P. Data, “MILK MATERIAL WITH GOOD FLAVOR AND PHYSICO-CHEMICAL PROPERTIES AND PROCESS OF PRODUCING THE SAME,” 2009.
 
[23]  N. Khady, K. Cheikhou, A. Nicolas, C. Mady, and D. C. Mar, “Characterisation of Electrochemical Parameters for the Stabilisation of Anthocyanins from Hibiscus Sabdarrifa L,” vol. 9, no. 4, pp. 125–133, 2021.
 
[24]  M. A. J. S. van Boekel, Kinetic Modeling of Reactions In Foods. 2008.
 
[25]  N. Al Fata, “Conception et exploitation d’ un dispositif expérimental instrumenté pour la prévision de la dégradation de la qualité nutritionnelle et de l ’ inactivation microorganismes dans les fruits et légumes transformés To cite this version : HAL Id : tel-017046,” UNIVERSITE D’AVIGNON ET DES PAYS DE VAUCLUSE THESE, 2018.
 
[26]  P. P. Ale and G. Agr, “Les fonctions d ’ état et les 3 principes de la thermodynamique,” 2010.
 
[27]  M. F. A. L. S. MORTREUX, “APPERTISATION DE CUISSES DE OPTIMISATION DE BAREMES CANARD CUISINEES,” 2004.