Journal of Food Security. 2019, 7(4), 122-128
DOI: 10.12691/JFS-7-4-4
Original Research

Difference in Biochemical Compound and Cyanogen Content among Six Improved Cassava Root Adopted in Burkina Faso, Nutritional and Technological Perspectives

Guira Flibert1, Savadogo Aly1, , Sawadogo-Lingani Hagrétou2, Somé Koussao3 and Traoré Yves1

1Laboratoire de Biochimie et d’Immunologie Appliquée (LaBIA); Department de Biochimie-Microbiologie, Université Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso

2Département Technologie Alimentaire (DTA/IRSAT / CNRST), Ouagadougou 03 BP 7047, Burkina Faso

3Institut de l’Environnement et de Recherches Agricoles (INERA/CNRST), Ouagadougou 04BP 8645 Ouagadougou 04, Burkina Faso

Pub. Date: August 20, 2019

Cite this paper

Guira Flibert, Savadogo Aly, Sawadogo-Lingani Hagrétou, Somé Koussao and Traoré Yves. Difference in Biochemical Compound and Cyanogen Content among Six Improved Cassava Root Adopted in Burkina Faso, Nutritional and Technological Perspectives. Journal of Food Security. 2019; 7(4):122-128. doi: 10.12691/JFS-7-4-4

Abstract

Cassava is getting increase in food habit and production in Burkina Faso without appropriate knowledge of the nutritional and technological potential of the existing improved varities. Six Tropical Manihot Species cassava varieties were collected and transported within 24 hours for analyses using standard methods. The moisture content varies between 68.31±1.28 and 85.49±0.47%. The acidity is ranged between 0.49±0.04 and 0.85±0.13% and the pH varies between 6.05 and 6.62. Starch content of the cassava fresh root varies from 14.15±1.50 to 22.51±0.63%, amylopectin content varies between 10.36±2.17 and 20.72±5.56%; amylose content varies from 3.78±3.78 and 6.05±3.40%. Cyanogenic potential is range between 6.85±0.68 and 34.71±7.41 mg.kg-1, the free cyanide content varies between 1.91±0.63 and 6.67±1.48 mg kg1. Cassava fresh root is a source of potassium (202.4±4.64 mg 100g1), calcium (25.30±0.75 mg 100g1), magnesium (17.10±0.23 mg 100g1), iron (11.81±15.02 mg 100g1), phosphorus (4.8±0.27 mg 100g1), zinc (2.55±3.70 mg 100g1) and sodium (0.9±0.01 mg 100g1). Some significant differences are observed for some compound and call for mixture use of varieties according to the final product.

Keywords

cassava, improved varieties, biochemical, cyanogenic, difference

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  Hubert, P. and E. Dupré, Le manioc. 1910.
 
[2]  François, E., Le Manioc, Sa production et son utilisation. Revue de botanique appliquée et d'agriculture coloniale, 1938. 18(204): p. 533-573.
 
[3]  Jones, W.O., Manioc in Africa. , Stanford University Press, Editor. 1959: Starford.
 
[4]  Laure, E., F. Pinton, and G. Sécond, Gestion Dy-namique de La Diversité Variétale Du Manioc En Amazonie Du Nord-Ouest. Nature Sciences Sociétés, 1998. 6: p. 27-42.
 
[5]  Balagopalan, C., Cassava utilization in food, feed and industry. Cassava: Biology, production and utilization, 2002: p. 301-318.
 
[6]  Charrier, A., et al. La diversité génétique du manioc: son origine, son évaluation et son utilisation. in International Seminar. 1987. Institut Français de Recherche Scientific pour le Développement en Coopération IFRDC.
 
[7]  Montagnac, J.A., C.R. Davis, and S.A. Tanumihardjo, Nutritional Value of Cassava for Use as a Staple Food and Recent Advances for Improvement. Comprehensive Reviews in Food Science and Food Safety, 2009. 8(3): p. 181-194.
 
[8]  Chavarriaga-Aguirre, P., et al., The potential of using biotechnology to improve cassava: a review. In Vitro Cellular & Developmental Biology-Plant, 2016. 52(5): p. 461-478.
 
[9]  Karri, V.R. and N. Nalluri, Cassava: meeting the global protein need. Plant Science Today, 2016. 3(3): p. 304-311.
 
[10]  Blench, R., The diffusion of cassava in Africa: lexical and other evidence. 2014.
 
[11]  Guira, F., et al., Origins, production, and utilization of cassava in Burkina Faso, a contribution of a neglected crop to household food security. Food Science & Nutrition, 2016.
 
[12]  Guira, F., A. Tankoano, and A. Savadogo, African cassava Traditional Fermented Food: The Microorganism’s : Contribution to their Nutritional and Safety Values-A Review. International Journal of Current Microbiology and Applied Sciences, 2016. 5(10): p. 664-687.
 
[13]  Dixon, A., et al., Improved cassava variety handbook. IITA Integrated Cassava Project, Ibadan, 2010. 129.
 
[14]  C-N-S, C.N.d.S., Catalogue national des espèces et varietés agricoles du Burkina Faso. 2014, Ministère de l’Agriculture et de la Sécurité Alimentaire, Ministère de l’Environnement et du Développement Durable, Ministère de la Recherche Scientifique et de l’Innovation: Ouagadougou, Burkina faso. p. 81.
 
[15]  Firestone, D., American Oil Chemists’ Society Official Methods and Recommended Practices. 2009, AOCS Press, Urbana, IL.
 
[16]  Tollier, M.T. and J. Robin. Adaptation de la methode al'orcinol sulfurique au dosage automatique des glucides neutres totaux: conditions d'application aux extraits d'origine vegetale. in Annales de technologie agricole. 1979.
 
[17]  Jarvis, C.E. and J.R. Walker, Simultaneous, rapid, spectrophotometric determination of total starch, amylose and amylopectin. Journal of the Science of Food and Agriculture, 1993. 63(1): p. 53-57.
 
[18]  Merrill, A.L. and B.K. Watt, Energy value of foods-basis and derivation. Energy value of foods-basis and derivation., 1955.
 
[19]  Essers, A.A., R.M. Van Der Grift, and A.G. Voragen, Cyanogen removal from cassava roots during sun-drying. Food Chemistry, 1996. 55(4): p. 319-325.
 
[20]  Essers, S.A., et al., Studies on the quantification of specific cyanogens in cassava products and introduction of a new chromogen. Journal of the Science of Food and Agriculture, 1993. 63(3): p. 287-296.
 
[21]  Burns, A.E., et al., Total cyanide content of cassava food products in Australia. Journal of Food Composition and Analysis, 2012. 25(1): p. 79-82.
 
[22]  Mtunguja, M.K., et al., Effect of genotype and genotype by environment interaction on total cyanide content, fresh root, and starch yield in farmerpreferred cassava landraces in Tanzania. Food Science & Nutrition, 2016.
 
[23]  PADONOU, I.M.A.T.é., Impact de la variabilité du potentiel cyanogenique des cossettes de manioc sur la thyroïde : cas du département des collines au Bénin, in FAST. 2016, Université Abomey Calavy: Cotonou, Bénin. p. 214.
 
[24]  Bakayoko S, et al., Rendements en tubercules frais et teneurs en matière sèche de soixante-dix nouvelles variétés de manioc (Manihot esculenta Crantz) cultivées dans le centre de la. Journal of Animal & Plant Sciences, 2012. 14(2): p. 1961-1977.
 
[25]  Charles, A.L., K. Sriroth, and T.-c. Huang, Proximate composition, mineral contents, hydrogen cyanide and phytic acid of 5 cassava genotypes. Food Chemistry, 2005. 92(4): p. 615-620.
 
[26]  Moura, E.F. and J.T. de Farias Neto, Chemical characterization of roots of bitter cassava sampled in Pará state, Brazil. Revista de Ciências Agrárias/Amazonian Journal of Agricultural and Environmental Sciences, 2015. 58(2): p. 131-137.
 
[27]  Traore, A., Test d'aptitude technologiques de cinq variétés de manioc en attiéké 2008, Programme Dévellopement Agricol: Ouagadougou, Burkina Faso. p. 25.
 
[28]  Oresegun, A., et al., Nutritional and anti-nutritional composition of cassava leaf protein concentrate from six cassava varieties for use in aqua feed. Cogent Food & Agriculture, 2016. 2(1): p. 1147323.
 
[29]  Somendrika, M., et al., Analyzing Proximate Composition of Macro Nutrients of Sri Lankan Cassava Variety Kirikawadi. Pakistan Journal of Nutrition, 2016. 15(3): p. 283.
 
[30]  Mtunguja, M.K., et al., Assessing variation in physicochemical, structural, and functional properties of root starches from novel Tanzanian cassava (Manihot esculenta Crantz.) landraces. Starch‐Stärke, 2016.
 
[31]  Favier, J., C., Valeur alimentaire de deux aliments de base africains : le manioc et le sorgho. . ORSTOM. , 1977: p. 127.
 
[32]  Agiriga, A. and M. Iwe, Optimization of Chemical Properties of Cassava Varieties Harvested at Different Times using Response Surface Methodology. American Journal of Advanced Food Science and Technology, 2016. 4(1): p. 10-21.
 
[33]  Mehouenou, F., et al., Physicochemical characterization of cassava (Manihot esculenta) elite cultivars of Southern Benin. Int. J. Adv. Res. Biol. Sci, 2016. 3(3): p. 190-199.
 
[34]  Temegne, N.C., F.N. Ajebesone, and A.F. Kuate, Influence de la composition chimique du sol sur la teneur en éléments nutritifs et le rendement du manioc (Manihot esculenta Crantz, Euphorbiaceae) dans deux zones agro-écologiques du Cameroun. International Journal of Biological and Chemical Sciences, 2015. 9(6): p. 2776-2788.
 
[35]  Ephraim, N., et al., Effect of cassava brown streak disease (CBSD) on cassava (Manihot esculenta Crantz) root storage components, starch quantities and starch quality properties. International Journal of Plant Physiology and Biochemistry, 2015. 7(2): p. 12-22.
 
[36]  Ballot, C.S.A., et al., Effet De Fumures Minérales Sur Le Rendement Et La Qualité Organoleptique Du Manioc (Manihot Esculenta Crantz) Dans La Zone De Savane Au Centre-Sud De Centrafrique. European Scientific Journal, 2016. 12(6).
 
[37]  Diacoumba, D., Diagnostique actualisé de la filière manioc pour une analyse de Chaines de Valeur de Valeur (CVA). 2008, Rapport de consultation, Programme Développement de l’Agriculture (PDA): Ouagadougou, Burkina Faso. p. 27.
 
[38]  Guira, F., et al., Hygienic Quality and Nutritional Value of Attiéké from Local and Imported Cassava Dough Produced with Different Traditional Starters in Burkina Faso. Food and Nutrition Sciences, 2016. 7(07): p. 555.
 
[39]  Ishiwu, C., J. Obiegbuna, and E. Igwe, Effect of Process Variables on Some Physical Properties and Hydrogen Cyanide Content of Dried Cassava Slices (abacha). Journal of Food Processing & Technology, 2015. 2015.
 
[40]  O'Brien, G.M., et al., Cyanogenic potential of fresh and frozen cassava on retail sale in three Irish cities: a snapshot survey. International Journal of Food Science & Technology, 2013. 48(9): p. 1815-1821.
 
[41]  Tivana, L.D., et al., Straightforward rapid spectrophotometric quantification of total cyanogenic glycosides in fresh and processed cassava products. Food chemistry, 2014. 158: p. 20-27.
 
[42]  Brito, O., A. Rabacow, and M. Cereda, Classification of nine month-old cassava cultivars by cyanide levels. Gene Conservetion, 2013. 12(1): p. 35-49.